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Abstract 
It is demons t ra ted  that  a compact  space and t ime-orientable space-time is cobordant  in 
the unoriented sense, tha t  is, bounds  a compac t  five-manifold. The bounding  property  is 
a direct consequence o f  the  triviality o f  the Euler number .  

Most science-fiction addicts are familiar with the notion of 'Hyperspace' a 
higher dimensional space-time bounded by Space-Time through which, in the 
far distant future, intersteller voyagers short-cut the (otherwise unsurmount- 
able) distances between the stars. The purpose of this article is to demonstrate 
that any compact, but otherwise physically reasonable relativistic space-time 
model is the boundary of some compact, connected, five-dimensional hyper- 
space. That is, any space and time-orientable space-time is cobordant in the 
unoriented sense. The physical interest of cobordism theory lies in attempting 
to answer the following type of question. Given two compact, disjoint regions 
X 1 and X2 of Space-Time X, is there a compact, connected five-manifold Z 
with bZ = X 1 U X2? In the following work we prove a simple lemma about 
compact space and time-orientable space-times and provide a brief review of 
some of the machinery we shall use in the proof of  the main theorem. 

Definition 1. A space-time is any paracompact, Hausdorff, smooth, con- 
nected four-manifold X admitting a smooth Lorentzian structure. 

A Lorentzian structure is a reduction of the Einstein bundle GL (4)(X) of X 
to the Lorentz group L. The algebraic structure of L allows further refinement 
of this definition. L has as normal subgroups the proper Lorentz group L+ of 
orientation preserving endomorphisms of Minkowski space, the orthochronous 
Lorentz group LI' of time-sense preserving endomorphisms and the proper 
orthochronous Lorentz group L+I" = L+ n LI". 

A reduction of L(X) to L+ is called an orientation of X, a reduction to L f  
a time-orientation of X and a reduction to L+ I' a simultaneous orientation and 
time-orientation ofX. I fL(X)  reduces to LI", L+ or L+I", X is called respectively 
time-orientable, orientable or space and time orientable. 

Lemma. A compact space and time orientable space-time has a trivial Euler 
number. 
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Proof? Given that the Einstein bundle reduces to L+t ,  the Lorentz bundle 
L+¢(X) reduces to SO(3). This is because the associated bundle L+~/SO(3)(X) 
has a contractible fibre (R 3) and hence a smooth global section. But such a 
section is the assignment of a point to each future-oriented timelike hyper- 
boloid in the tangent bundle of X, that is, a global non-vanishing vector field. 
Thus by the Poincar6-Hopf theorem, x(X) = O. 

The Euler number x(X) of X is only one (but the most important) of the 
topopological invariants of X that we shall be using in the proof of  the main 
theorem. The following is a brief review of some of the more complicated 
invariants (Hirzebruch, 1966). In this section, X will stand for a compact, 
oriented 4k-manifold with k ~> 1. 

(i) Associated with X are the graded cohomology algebras H*(X, 7/2) 
H*(X, Z) and H*(X, Q) where Z is the ring of integers, 2[ 2 is the field of  
mod(2) integers and Q is the field of rational numbers. There is a homology 
class X* E H4k(X, Z 2), the 7/2-orientation of X and a homology class 
X .  E Hak(X, 7/) called the orientation class of X. 

(ii) In each dimension 0 < i ~< 4k there are the Stiefel-Whitney character- 
istic classes wi E HI(X, 7/2) which, together with the Ze-orientation class X* 
and the Kronecker product, define the Stiefet-Whitney numbers: 

wr11,-,,...,,Jw[pP(X*) where ilr I + . . .  + iprp = 4k 

A necessary and sufficient condition for X to be orientable is that w 1 = 0. The 
class w4k is related to the Euler number x(X) by w4k(X* ) = (x(X)) rood (2). 

(iii) In dimensions = 0 mod(4) there are Pontryagin characteristic classes 
Pi E H4i(x, Z) which, together with the Z-orientation class X ,  and the 
Kronecker product, define Pontryagin numbers: 

prlil "J . . . . .  .~JP~P(X,)  where il rl + + iprp = k 

The Pontryagin classes are related to the Stiefel-Whitney classes by 
w2i =- Pi mod(2). 

(iv) Another topological invariant of compact oriented 4k-manifolds is the 
signature Sx  defined as follows. The cup-produc~ and the Z-orientation class 
define a bflinear, symmetric, non-degenerate form bx on Hek(X, Q ) by 

Hek(X,Q)QHeg(X,Q)  '~ ,  H a X ( X , Q ) ~  Q 

The signature of X is defined as the signature of bx, i.e.: p - n where p is the 
number of positive and n is the number of negative entries in the diagonalised 
form of bx. The signature and the Euler number are related by Sx  =-=- x(X) 
mod(2). 

Definition 2. Two compact manifolds X1 and X2 are cobordant iff  
X1 u X2 = OZ for Z a compact manifold. 

The set M o of cobordism classes of compact manifolds is a graded Z 2- 
algebra under the operations induced by the product and sum of manifolds. 
The structure of the cobordism algebra was determined by Thorn (1954) who 
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showed that two compact manifolds are cobordant iff they have the same 
Stiefel-Whitney numbers. The class of the empty manifold forms the additive 
identity of the cobordism algebra and a manifold is called cobordant iff it is 
cobordant to the empty manifold, that is, iff it bounds a compact manifold. 
Thus in order to show that a compact manifold is a boundary, it is sufficient to 
show that it has trivial Stiefel-Whitney numbers. 

Theorem. Any compact space and time-orientable space,time is cobordant. 
Proof. We show that all the Stiefel-Whitney numbers of a compact space 

and time-orientable space-time are trivial. By lemma 1 a compact space and 
time orientable space-time has trivial Euler number. Hence because w4(X* ) = 
[X(X)] rood(2), the top Stiefel-Whitney number is trivial. Also because X is 
orientable, w I = 0 which implies that w3. wl (X*), w2, w12(X *) and w14(X *) 
are trivial. The only remaining number is w22(X*). To show that this also 
vanishes we make use of the Hirzebruch Signature Theorem P I ( X , )  = 3. Sx  
(Hirzebruch, 1966). From this we obtain P I ( X , )  - Sxmod(2 ) and hence using 
w22(X*) = P1 (32,) rood(2) and x(X) = Sxmod(2) ,  we obtain w22(X,) = 
X(X)mod(2). Hence x(X) = 0 implies that w22(X)= 0. 

One can define a cobordism relation in the category of oriented manifolds. 
Definition 3. Two compact, oriented manifolds ~ and X~" are cobordant as 

oriented manifolds i f fX~ U X~- = 3o Z, the oriented boundary of a compact 
oriented manifold Z. 

The set Mso of cobordism classes is a graded ring with the operations 
induced by the sum and product of manifolds. Its structure was determined by 
Wall (1960) who also showed that two compact oriented manifolds are 
cobordant as oriented manifolds iff they have the same Pontryagin and Stiefel- 
Whitney numbers. Thus a compact oriented manifold is an oriented boundary 
iff its Pontryagin and Stiefel-Whitney numbers are all trivial. Specialising to 
compact space and time-orientable space-times, the only obstruction to 
choosing an oriented manifold bounded by the space-time is the Pontryagin 
number P1 (X,) which we know to be even. Because P1 (X,)  = 3Sx, the 
obstruction is involved with the group H2(X, Q), in particular, if for example, 
H2(X, (~ ) = 0, X is an oriented boundary. 

Another type of cobordism relation was defined by Reinhart (1962), vector 
cobordism. 

Definition 4. Two compact manifolds X1 and Xz are vector-cobordant iff 
they are cobordant in the unoriented sense and if they together bound a com- 
pact manifold with a non-zero vector field interior oriented on X1 and exterior 
oriented on X> 

The Euler number turns out to be a vector cobordism invariant and Reinhart 
showed that two compact manifolds are vector.cobordant iff they have the 
same Euler and Stiefel-Whitney numbers. Therefore because a compact space 
and time-orientable space-time has zero Euler and Stiefel-Whitney numbers it 
is vector cobordant. That is, any compact space and time orientable space-time 
is the boundary of a compact connected manifold carrying a non-zero vector 
field normal to an interior oriented on the bounding space-time. In our 'hyper- 
space' interpretation of cobordism, not only is any reasonable compact space- 
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time the boundary of some five-dimensional hypermanifold, but there is an 
everywhere well-defined direction in the hypermanifold, an extra 'time 
dimension'. 

Another application of vector-cobordism has been discussed by Reinhart 
(1962), Geroch (1967) and Yodzis (1972, 1973). Given a time-orientation of 
a time-orientable space-time (a non-zero timdike vector field) two compact 
hypersurfaces transverse to the time direction which together bound a compact 
region of the space-time are vector cobordant. Does this mean that the two 
manifolds need be topologically related in a sense more narrow than vector- 
cobordism? To answer such a question one looks at the vector-cobordism 
group M}. Because the latter is trivial, there need not be any relationship. 
Reinhart (1964) also defined codimension-one foliated cobordism. In this 
theory, the vector field occurring in the definition of vector cobordism has 
to be transverse to a smooth codimension-one fohation of the bounded mani- 
fold. As yet, the structure of  the foliated cobordism groups is unknown. They 
have the following applications to space-time topology. Suppose we ask for 
the time-orientation vector field of a time-orientable space-time to be trans- 
verse to a foliation of the space-time into space-like hypersurfaces. Then any 
two compact leaves which together bound a compact subspace of the space- 
time are cobordant in the foliated sense. Motivated by results like the Reeb 
stability theorem, one would probably obtain some non-trivial relationship 
between the hypersurfaces. 

Returning to hyperspace, we have shown that any two compact, space mad 
time-orientable space-times are cobordant in the unoriented sense, and which 
is a stronger result, they are vector cobordant. Thus if X1 and X2 are any two 
compact, space and time-orientable space-times, there is a compact, connected 
five-manifold Z with a vector field vanishing nowhere, interior normal on X1 
and exterior normal on X2. Call this the 'transfer' vector field (a sort of natural 
navigational aid in hyperspace!). If  we ask for the transfer field to be transverse 
to a smooth codimension-one foliation of hyperspace, our hypothetical space 
traveller is always in some one of the ordered family of 'space-times' between 
Xa and X2. To him, the character of space-time would seem to metamorphise 
into his desired space-time destination. 
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